# KI in der Luftfahrt: Umgang mit Automatisierungs-Bias und Situationsbewusstsein bei Piloten

#### Benjamin Hari

AviRail Consulting

Airport Forum 2025

27. November 2025

## 1. Einstieg

#### **Heutiger Fokus: Mensch-KI-Teamwork**

- KI verändert das Cockpit: der Pilot wird hochqualifizierter Systemmanager und Entscheider über KI-Empfehlungen.
- Leitfrage: Wie bleibt der Mensch im Loop, wenn KI mitentscheidet?
- Ziel: Automatisierungs-Bias verstehen, Situationsbewusstsein (SAW) sichern, menschliche Verantwortung erhalten.
- **EASA DS.AI (2025):** Vertrauen und Nachvollziehbarkeit werden erstmals als *technische Sicherheitskriterien* definiert.

## 2. Automatisierungs-Bias

Übermässiges Vertrauen in Systeme → Vigilanzverlust, «Automation Complacency»

#### **EASA DS.AI.140 – Ethics-Based Assessment:**

- KI darf kein unfairem Bias oder manipulativen Einfluss auf Pilotenverhalten erzeugen.
- Menschliche Autonomie muss jederzeit gewahrt bleiben.
- Ziel: Calibrated Trust bewusstes, überprüfbares statt blindem Vertrauen.

«Bias verzerrt menschliche Wahrnehmung – nicht dessen Intelligenz.»

## 3. Drei Schritte des Situationsbewusstsein

### Drei Stufen des SAW – nach Endsley (1995):

- 1. Perception (Wahrnehmen): Erfassen der relevanten Elemente der Situation.
- 2. Comprehension (Verstehen): Einordnen der Bedeutung und Zusammenhänge.
- 3. Projection (Antizipieren): Vorhersage der wahrscheinlichen zukünftigen Entwicklung.

KI kann jede dieser drei Stufen unterstützen – oder in einzelnen Fällen auch stören.

#### **EASA DS.Al-Definition:**

«Shared Human–Al Situation Awareness – the collective representation of a situation achieved through human and Al capabilities.»

## 4. Mensch und KI im Vergleich

| Phase         | Pilot             | KI                | Bias             |
|---------------|-------------------|-------------------|------------------|
| Perception    | Sinneswahrnehmung | Datenaufnahme     | Data Bias        |
| Comprehension | Kontextdeutung    | Mustererkennung   | Algorithmic Bias |
| Projection    | Antizipation      | Vorhersagemodelle | Overreliance     |

**EASA DS.AI.170 (a):** KI muss Informationen bereitstellen, die für den Piloten verständlich, verlässlich und im Einklang mit seinem mentalen Modell sind.

## 5. Praxis: PEGGASUS / CSEM

Lutnyk et al. (2022) Gaze-based interactions in the cockpit of the future. ETH Zürich / CSEM / Lufthansa Aviation Training.

## Technologie:

- Eye- & Gesture-Tracking (60 fps, < 1° Genauigkeit, 32 ms Latenz).</li>
- Im A320 FTD (L3 Harris) unter realistischen Bedingungen getestet.
- Infrarot-Erfassung der Pupillenreflexion → präzise Blickpunktbestimmung.



## 5. Praxis: PEGGASUS / CSEM

Lutnyk et al. (2022) Gaze-based interactions in the cockpit of the future. ETH Zürich / CSEM / Lufthansa Aviation Training.

## **Studienergebnisse:**

- +32 % schnellere Informationsaufnahme.
- +13 % besseres SAW.
- Reduzierte Arbeitslast, aber Risiko der Informationsüberflutung.



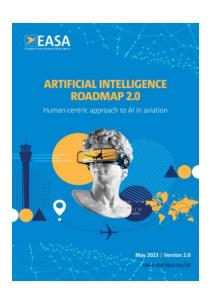
## 5. Praxis: PEGGASUS / CSEM

Lutnyk et al. (2022) Gaze-based interactions in the cockpit of the future. ETH Zürich / CSEM / Lufthansa Aviation Training.

## **Akzeptanz & Kontext:**

 AR-Assistenz kontextsensitiv an Flugphase (z. B. Climb) angepasst → höhere Effizienz & weniger Cognitive Load.

 Piloten zeigten hohe Akzeptanz, solange das System assistiert statt überwacht.




## 6. Von Transparenz zu Plausibilität

#### Regulatorischer Rahmen:

- EU Al Act 2024/1689: Cockpit-Kl = High-Risk System.
- EASA Al Roadmap 2.0: Human Oversight & Explainability.
- EASA DS.Al 170: Operational Explainability KI muss das «Warum» in der passenden Tiefe darstellen.







NPA 2025-07 (B) — Proposed detailed specifications and associated acceptable means of compliance and guidance material for AI trustworthiness (DS.AI)

## 6. Von Transparenz zu Plausibilität

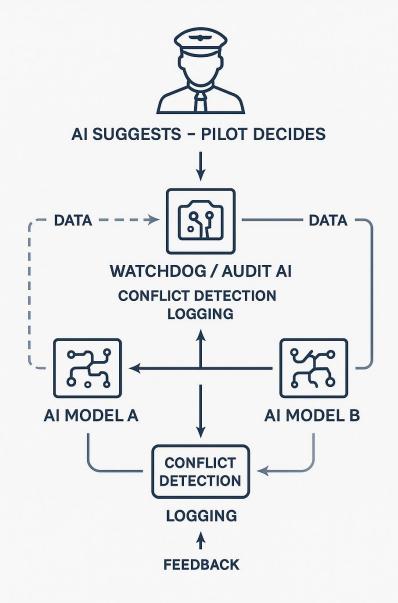
#### Herausforderung:

- Moderne KI-Modelle führen bis zu 10<sup>18</sup> Operationen pro Sekunde aus.
- Eine vollständige Offenlegung aller Berechnungsschritte ist technisch nicht machbar.

#### **EU AI Act 2024/1689:**

- «Meaningful information about the logic involved, sufficient for the user to interpret the output.»
- Dies ist kein technisches Defizit, sondern eine für **menschliche Faktoren** optimierte Anforderung.
- Gesetzlich gefordert ist interpretierbare nicht vollständige Erklärbarkeit.

## 7. KI Assurance-Architektur


#### Struktur:

- Zwei unabhängige KI-Modelle + Audit-/Wächter-KI → Konfliktprüfung & Eskalation.
- Prinzip «Management by Exception».

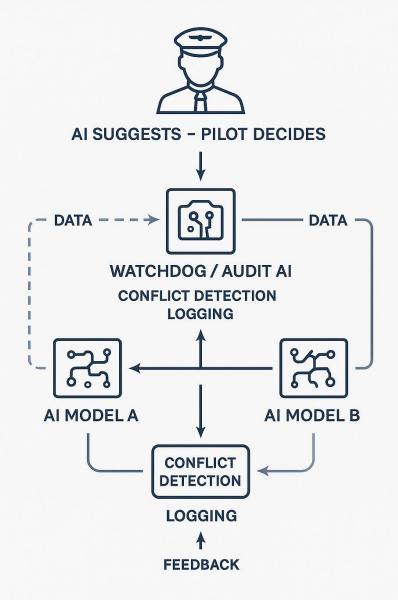
#### Voraussetzungen:

- Getrennte Trainingsdaten
- Vollständiges Logging
- Cyber-Robustheit

#### **ASSURANCE ARCHITECTURE**



## 7. KI Assurance-Architektur

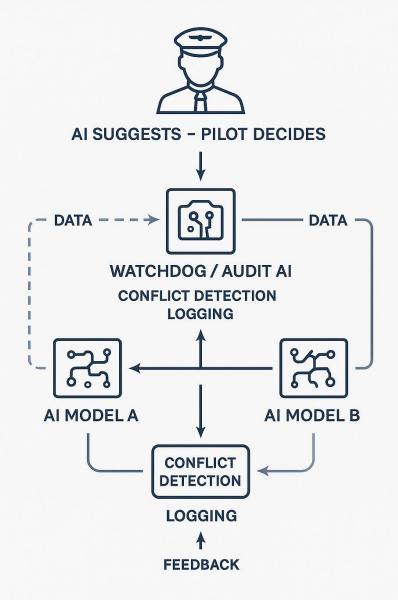

#### **EASA AI Roadmap 2.0:**

- Robustheits-Nachweise & Bias-Erkennung.
- Schutz vor «Unintended / Emergent Behaviour».

#### **EASA DS.AI 110:**

- **Human–Al collaboration** = supervised automatic decision & action implementation.
- Pilot behält Verantwortung und kann jederzeit eingreifen.

#### **ASSURANCE ARCHITECTURE**




## 7. KI Assurance-Architektur

## **Fazit:**

Al suggests – pilot decides.

#### **ASSURANCE ARCHITECTURE**



## 8. EBT 2.0 Kompetenzen im KI-Cockpit

#### **Erweiterte Observable Behaviours:**

- SAW: Prüft KI-Informationen gegen eigene Wahrnehmung.
- **PSD:** Fragt nach dem «Warum» von KI-Empfehlungen, behält Cognitive Decision Authority
- WLM: Steuert Workload unter Einbezug der KI.
- Managt Cognitive Load im Zusammenspiel mit KI-basierten Assistenzsystemen (PEGGASUS / CSEM) ohne Verlust des SAW.

**EASA DS.Al 170 (b)** fordert «human-Al shared situation representation» und adaptive Informationsdichte.

## 9. Ausblick: TEM im KI-Cockpit

### **Threat and Error Management (TEM)**

- Klassisches TEM: Mensch versus Technik (und andere Faktoren).
- KI bringt neue Threat Domains: Algorithmic Bias, Data Drift, Human–Al Trust Gap.
- Ziel: AI-Enhanced TEM → gemeinsame Analyse von Human & Machine Threats.

## 10. Fazit & Zukunft

#### **Sicheres Mensch-KI-Teamwork:**

- Plausibilität > Transparenz Verstehen statt Rechnen.
- Mensch im Zentrum Human Oversight bleibt Sicherheitsanker.
- EASA DS.AI 2025 führt Operational Explainability und Shared SAW als Pflicht ein.
- Training, Logging und Divergenzdetektion sichern Verantwortung und Vertrauen.

## 10. Fazit & Zukunft

### Ausblick:

- Al-Enhanced TEM im Cockpit
- EBT 2.0 Shared SAW im Training
- Al Assurance Modelle (EASA AI-CS?)

## 10. Fazit & Zukunft

#### Themen, die heute nicht im Fokus standen:

- Liability Gap wer haftet bei KI-Fehlern?
- Datenschutz und biometrische Daten (Eye Tracking).
- KI-Integration in ältere, bestehende Cockpits (z.B. A320ceo, B737NG).
- De-Skilling und Crew Reduction Debates (politisch sensibel).

## 10. Fazit & Ausblick

## **Zitat:**

«The future of aviation safety depends on how well humans and AI share the same reality.»

## Vielen Dank für Eure Aufmerksamkeit

## **Benjamin Hari**

AviRail Consulting

Mail: research@avirail.aero